

Mechanical stability of fully personalized, abutment-free zirconia implant crowns on a novel implant-crown interface

An in vitro study

Investigators

Med. dent. Jenni Hjerppe, PhD

Prof. Dr. Ronald Jung PhD

Prof. Dr. Dr. h.c. Mutlu Özcan, PhD

PD Dr. med. dent. Sven Mühlemann

Objective

To test failure load and failure mode of a novel implant-crown interface specifically designed for the fabrication of fully personalized and abutment-free monolithic zirconia CAD-CAM crowns compared to conventional implant-abutment interfaces involving prefabricated or centrally manufactured abutments for zirconia CAD-CAM crowns.

Materials

CONCLUSION

Based on the findings of conducted in vitro study, the authors conclude that the abutment-free matrix[®] implant system offers similar mechanical stability compared to conventional abutments.

Methods

Artificial Ageing **× 1.2 million** cycles **× 30°** angulation

- × Thermocycling
 - 5-50°C

Measurement of failure load X Set-up according to **ISO 14801**.

- × 30° angulation.
- × Static load increase until failure.

- × All groups exhibited high failure loads.
- X No statistical difference between matrix[®] and Straumann[®] Vario-base and Zr Abutment.
- > 0% screw loosing of TRI[®]-Base,
 16.7% of screw looseing with Straumann[®] Variobase.
- × 83.3% of Straumann® Zr Abutments had broken cone before crown was fractured.

Pictures

Straumann® Zr Abutment

Straumann® Variobase

TRI[®] Base

matrix[®] Abutment-free

Findings

83.3% of Straumann[®] Zr. Abutments had abutment fracture below implant shoulder

matrix[®] interface intact or crown fracture extending into connection